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Introduction
• In-Context Learning (ICL): model’s ability to solve tasks unseen

during training, only based on information provided in context, without
updating its weights.

• Few-Shot ICL:{
(xτ , yτ)τ≤t, xt+1

}
ŷt+1 = fθ

(
(xτ , yτ)τ≤t, xt+1

)
• Autoregressive ICL:{

y1, y2, . . . , yt
}

ŷt+1 = fθ
(
y1:t

)
• Transformer Architecture and ICL: [1] demonstrated transformer

models can learn in context without explicit training, since then many
empirical and theoretical studies to better understand ICL capabilities of
transformers.

• Generalized State-Space Models (GSSMs): Family of models
including S4, Mamba, Griffin; Promising alternative to transformers;
Empirically shown to be capable of ICL but very little understanding of
underlying mechanism

Contributions
• Extended HiPPO framework: SSMs can approximate next state of

dynamical systems via explicit weight construction
• Derived asymptotic error bound for approximating input signal derivative

with continuous SSM
• Experimentally evaluated weight construction across function classes,

model sizes, and context lengths

SSMs and HiPPO Theory
• SSMs map an input signal u(t) ∈ R to an output signal y(t) ∈ R via a

hidden state x(t) ∈ RN and take the following form:{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

• HiPPO Theory: Hilbert space spanned by the orthogonal basis
functions {pn(t, s)}n≥0, equipped with a measure ω(t, s) and an inner
product ⟨f, g⟩ω =

∫ t
−∞ f (s)g(s)ω(t, s)ds

• Reconstruction: As N → ∞ and for an appropriate choice of A & B:

u(s) =
∞∑
n=0

xn(t)pn(t, s) ∀s ≤ t

Solving Dynamical Systems with SSMs
• Autoregressive ICL for SSMs: Predict uk+1 given u≤k in context
• Continuous relaxation: k → t, k + 1 → t +∆t, uk ↔ u(t)

• Approximate next input: u(t +∆t) = u(t) +
∫ t+∆t
t u̇(s)ds

Approximate u̇(t) with continuous SSMs:
• Use parameterization: u̇(t) ≈ y(t) = Cx(t) + Du(t)

• For LegT and FouT bases:

Cj =
N∑
k=0

Akjpk(t, t), D =
N∑
k=0

Bkpk(t, t)

Error analysis for finite hidden state:
• For FouT basis with N -dimensional approximation:

|u̇(t)− u̇N(t)| ∈ O(L/Nk−2)

• Where L is Lipschitz constant of u(k)(t), k ≥ 3

Discretize the integral to estimate uk+1:

ûk+1 ≈
(
1− D∆t

2

)−1 [(
1 +

D∆t

2

)
uk +∆tCxk+1

]
= Cxk+1 + Duk

Discrete system: {
xk+1 = Āxk + B̄uk
ûk+1 = C̄xk+1 + D̄uk

Where: Ā = (I − ∆t
2 A)−1(I + ∆t

2 A), B = ∆t(I − ∆t
2 A)−1B

Experiments
1. Van der Pol oscillator solution and errors of FouT and LegT weight

construction.
2. Examples of the Filtered Noise (α = 0.05) and White Signal (γ = 2)

datasets
3. Error dependence on N and γ for the White Signal dataset (mean across

1k functions and 1 std. plotted).
4. Error dependence on N and α for the Filtered Noise dataset (mean across

1k functions and 1 std. plotted).
5. Error dependence of LegT on the context length t on the White Signal

Dataset (mean across 1k functions and 1 std. plotted)
6. Performance comparison of weight construction for LegT with a mixed

dataset (3 seeds, min-max error bar):
(I) Initializing A,B,C,D at construction and training C,D.
(II)Fixing A,B,C,D at construction.
(III)Fixing A,B at construction, standard Gaussian initialization and

training of C,D.
(IV) Initializing A,B,C,D at construction and training all of them
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